105 research outputs found

    A simple proof of Kotake-Narasimhan theorem in some classes of ultradifferentiable functions

    Full text link
    [EN] We give a simple proof of a general theorem of Kotake-Narasimhan for elliptic operators in the setting of ultradifferentiable functions in the sense of Braun, Meise and Taylor. We follow the ideas of Komatsu. Based on an example of Metivier, we also show that the ellipticity is a necessary condition for the theorem to be true.C. Boiti and D. Jornet were partially supported by the INdAM-GNAMPA Projects 2014 and 2015. D. Jornet was partially supported by MINECO, Project MTM2013-43540-PBoiti, C.; Jornet Casanova, D. (2017). A simple proof of Kotake-Narasimhan theorem in some classes of ultradifferentiable functions. Journal of Pseudo-Differential Operators and Applications. 8(2):297-317. https://doi.org/10.1007/s11868-016-0163-yS29731782Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. Oper. Theory Adv. Appl. Birkhauser Basel 245, 21–33 (2015)Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. arXiv:1412.4954Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 Article ID 438716 (2014). doi: 10.1155/2014/438716Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. Séminaire Goulaouic-Schwartz, 1978–1979, Exp No. 13, École Polytech, PalaiseauBonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways of define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)Fernández, C., Galbis, A.: Superposition in classes of ultradifferentiable functions. Publ. Res. I Math. Sci. 42(2), 399–419 (2006)Jornet Casanova, D.: Operadores Pseudodiferenciales en Clases no Casianalíticas de Tipo Beurling. Universitat Politècnica de València (2004). doi: 10.4995/Thesis/10251/54953Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Stud. Math. 208(1), 31–46 (2012)Komatsu, H.: A characterization of real analytic functions. Proc. Jpn Acad. 36, 90–93 (1960)Komatsu, H.: On interior regularities of the solutions of principally elliptic systems of linear partial differential equations. J. Fac. Sci. Univ. Tokyo Sect. 1, 9, 141–164 (1961)Komatsu, H.: A proof of Kotaké and Narasimhan’s theorem. Proc. Jpn Acad. 38(9), 615–618 (1962)Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. Fr. 90, 449–471 (1962)Kumano-Go, H.: Pseudo-Differential Operators. The MIT Press, Cambridge, London (1982)Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 3. Dunod, Paris (1970)Métivier, G.: Propriété des itérés et ellipticité. Commun. Part. Differ. Eq. 3(9), 827–876 (1978)Nelson, E.: Analytic vectors. Ann. Math. 70, 572–615 (1959)Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Am. Math. Soc. 39(3), 547–552 (1973)Oldrich, J.: Sulla regolarità delle soluzioni delle equazioni lineari ellittiche nelle classi di Beurling. (Italian) Boll. Un. Mat. Ital. (4) 2, 183–195 (1969)Petzsche, H.-J., Vogt, D.: Almost analytic extension of ultradifferentiable functions and the boundary values of holomorphic functions. Math. Ann. 267(1), 17–35 (1984

    A characterization of the wave front set defined by the iterates of an operator with constant coefficients

    Full text link
    [EN] We characterize the wave front set WF*P (u) with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution u is an element of D '(Omega), Omega an open subset in R-n. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type.The authors were partially supported by FAR2011 (Universita di Ferrara), "Fondi per le necessita di base della ricerca" 2012 and 2013 (Universita di Ferrara) and the INDAM-GNAMPA Project 2014 "Equazioni Differenziali a Derivate Parziali di Evoluzione e Stocastiche" The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P.Boiti, C.; Jornet Casanova, D. (2017). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(3):891-919. https://doi.org/10.1007/s13398-016-0329-8S8919191113Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., PalaiseauBonet, J., Fernández, C., Meise, R.: Characterization of the ω\omega ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000)Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)Fernández, C., Galbis, A., Jornet, D.: ω\omega ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004)Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008)Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958)Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971)Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983)Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012)Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960)Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)Métivier, G.: Propriété des itérés et ellipticité. Comm. Partial Differ. Equ. 3(9), 827–876 (1978)Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973)Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992)Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993)Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980

    An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO(2) (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO(2) values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longer-term variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.</p
    • …
    corecore